

IN SILICO APPLICATIONS IN MICROBIOLOGICAL FOOD SAFETY AND RISK ASSESSMENT: THE ANALYSIS OF WHOLE GENOME SEQUENCE

Pier Sandro Cocconcelli

Università Cattolica del Sacro Cuore

Italy

Microorganisms in the Food Chain

THE INTENTIONAL USE OF MICROORGANISMS IN THE FOOD CHAIN

USE	Authorisation
Food starter cultures	Not required
Human probiotics	Health Claims
Animal probiotics	Feed Additives
Feed fermentation-silage	Feed Additives
Enzyme production	Feed Additives - Food Additives
Amino acid production	Feed Additives - Food Additives
Vitamin production	Feed Additives - Food Additives
Biopesticide	Plant Protection Products
Genetically Modified Microorg.	Feed Additives - Food Additives- GMO

The theoretic risk assessment

KNOWLEDGE AND DATA

HAZARD IDENTIFICATION

HAZARD CHARACTERIZATION

EXPOSURE ASSESSMENT

RISK CHARACTERIZATION

OPINION FOR RISK MANAGERS

Microbiological Risk Assessment in Practice: CONTAMINANTS, BIOLOGICAL HAZARDS......

Microbiological Risk Assessment in practice: Regulated Products

A wide variety of microorganisms are intentionally added at different stages into the food chain, either directly or as a source of additives or enzymes.

More than 130 bacterial species

Arthrobacter globiformis Streptococcus thermophilus

Filamentous fungi

Fusarium solani Trichothecium domesticum

Yeasts

Candida famataWilliopsis mrakii

Virus

Bacteriophages – Baculovirus -Potovirus

Safety Assessment Guidelines and Guidance

Safety of microbial agents intended for deliberate introduction in the food chain and notified to EC-EFSA:

- for the consumer
- for the animals (when applicable)
- for the user/worker,
- for the environment

Risk Assessment of Microbial products

- Microbial Agent
- Manufacturing process
- Product
 - Metabolism and residue studies
 - Toxicological studies
 - Acute toxicity
 - Genotoxicity studies (mutagenicity, clastogenicity)
 - Subchronic oral toxicity
 - Chronic oral toxicity/carcinogenicity
 - Reproduction toxicity including teratogenicity
 - Known toxins and virulence factors
 - Antibiotic susceptibility
 - Antibiotic production

How to assess the safety of a microbial product?

THE NATIONAL ACADEMIES

Platform	Read length (bp)	Throughput	Reads	Runtime	Error profile	Instrument cost (US\$)	Cost per Gb (US\$, approx.)	Platform	Read length (bp)	Throughput	Reads	Runtime	Error profile	Instrument cost (US\$)	Cost per Gb (US\$, approx.)
Sequencing by lig	ation							Sequencing by sy	nthesis: SNA (cont	.)					
SOLiD 5500 Wildfire	50 (SE) 75 (SE)	80 Gb 120 Gb	~700M*	6 d*	\leq 0.1%, AT bias [‡]	NA§	\$130 [‡]	Illumina HiSeq X	150 (PE)*	800–900 Gb per flow cell*	2.6–3 B (PE)*	<3 d*	0.1%, substitution [‡]	\$1,000 ^{‡.1}	\$7.0 [±]
	50 (SE)*	160 Gb*						Qiagen GeneReader	NA	12 genes; 1,250 mutations ²²	NAII	Several days ²²	Similar to other SBS systems ²²	NAII	\$400–\$600 per
SOLiD 5500 xl	50 (SE)	160 Gb	~1.4B*	10 d*	≤0.1%, AT bias [‡]	\$251,000 [‡]	1,000 [‡] \$70 [‡]	Seauencing by synthesis: SNA							
	75 (SE)	240 Gb						454 CS lunior	Up to 600: 400	35 Mb*	~0.1M*	10 h*	1% indel [‡]	NΔ§	\$40.000‡
	50 (SE)*	320 Gb*						151 05 junior	average (SE, PE)*	5510	0.11	1011	170, Indet		\$10,000
BGISEQ-500 FCS ¹⁵⁵	50-100 (SE/PE)*	8–40Gb*	NA ^{II}	24 h*	≤0.1%, AT bias‡	\$250 (REF. 155)	NAII	454 GS Junior+	Up to 1,000; 700 average (SE, PE)*	70 Mb*	~0.1 M*	18 h*	1%, indel [‡]	\$108,000 [‡]	\$19,500 [‡]
BGISEQ-500 FCL ¹⁵⁵	50–100 (SE/PE)*	40-200Gb*	NA ^{II}	24 h*	≤0.1%, AT bias‡	\$250,000 (REF. 155)	NA ^{II}	454 GS FLX Titanium XLR70	Up to 600; 450 mode (SE, PE)*	450 Mb*	~1M*	10 h*	1%, indel [‡]	NA§	\$15,500 [‡]
Sequencing by syn	nthesis: CRT							454 GS FLX	Up to 1,000; 700	700 Mb*	~1M*	23 h*	1%, indel [‡]	\$450,000 [‡]	\$9,500 [‡]
Illumina MiniSeq	150 (SE)*	2.1-2.4 Gb*	14–16 M*	17 h*	<1%, substitution [‡]	\$50,000	\$200-300	Titanium XL+	mode (SE, PE)*						
Illumina MiniSeo	75 (SE)	16-18Cb	22_25 M (SE)*	7 h	<1%	10/ (REF. 118)	\$200_300	lon PGM 314	200 (SE)	30–50	400,000-550,000*	23 h	1%, indel [‡]	\$49 [‡]	\$25–3,500 [‡]
High output	75 (PE)	3 3_3 7 Cb	22 25W (32)	13b	<1%, \$50,000 substitution [‡] (REF. 118)	(REF. 118)		400 (SE)	60-100 Mb*		3.7 h*				
	150 (PE)*	6.6_75.Cb*		24.6*				lon PGM 316	200 (SE)	300–500 Mb	2-3 M*	3 h	1%, indel‡	\$49 [‡]	\$700–1,000 [‡]
Illumina MiSeg v2	36 (SE)	540_610 Mb	12_15 M (SE)	2411 4.h	0.1%	\$00.000‡	~\$1.000		400 (SE)*	600 Mb-1 Gb*		4.9 h*			
indifinite wilded vz	25 (PE)	750_850 Mb	24_30 M (PE)*	5.5.6	substitution [‡]	\$99,000	\$996	lon PGM 318	200 (SE)	600 Mb-1 Gb	4–5.5 M*	4 h	1%, indel‡	\$49 [‡]	\$450-800 [‡]
	150 (PE)	4 5-5 1 Gb	24-30 WI (I L)	24h					400 (SE)*	1-2 Gb*		7.3 h*			
	250 (PE)*	75-85Gb*		39h*			\$142 [‡]	Ion Proton	Up to 200 (SE)	Up to 10 Gb*	60-80 M*	2–4h*	1%, indel‡	\$224 [‡]	\$80 [‡]
Illumina MiSeq v3	75 (PE)	3 3–3 8 Gb	44–50 M (PE)*	21–56h*	0.1%, substitution [‡]	\$99,000 [‡]	\$250	lon \$5 520	200 (SE)	600 Mb-1 Gb	3–5 M*	2.5 h	1%, indel [‡]	\$65 (REF. 158)	\$2,400*
indimina interest is	300 (PE)*	13 2–15 Gb*	11 30111(12)	21 5011			\$110 [‡]		400 (SE)*	1.2-2 Gb*		4h*			\$1,200*
Illumina NextSeq	75 (PF)	16–20Gb	Up to 260 M (PF)*	15 h	<1%, \$250 [‡] substitution [‡]	\$250 [‡]	\$42 Ion S5 530 \$40 [‡]	200 (SE)	3–4 Gb	15-20 M*	2.5 h	1%, indel‡	\$65 (REF. 158)	\$950*	
500/550 Mid	150 (PE)*	32-40Gb*		26h*					400 (SE)*	6-8 Gb*		4h*			\$475*
output	75 (SE)	25 20 Ch	400 M (SE)*	11 6	< 10/	¢arot	¢ 4.2	lon \$5 540	200 (SE)*	10-15 Gb*	60-80 M*	2.5 h*	1%, indel‡	\$65 (REF. 158)	\$300*
500/550 High	75 (JE)	50-60 Cb	400 M (SL)	1111 18b	substitution [‡]	\$Z30.	\$41 Single-molecule re	eal-time long reads	;						
output	150 (PE)*	100-120 Cb*	000111(12)	20.6*		\$22	Pacific	~20Kb	500 Mb-1 Gb*	~55,000*	4 h*	13% single pass,	\$695 [‡]	\$1,000 [‡]	
Illumina	36 (SE)	9-11Gb	300 M (SE)*	7 h	0.1%	\$600‡	\$230	BioSciences RS II					≤1% circular consensus read		
HiSeq2500 v2	50 (PE)	25-30 Gb	600 M (PE)*	16b	substitution [‡]	4050	\$200						indel [‡]		
Rapid run	100 (PE)	50_60Cb	000111(1 E)	27h			\$50	\$30 Pacific Biosciences \$45 Sequel \$40 [±] Oxford Nanopore MK 1 MinION \$180 Oxford Nanopore PromethION	8–12 Kb ⁶⁹	3.5–7Gb*	~350,000*	0.5–6h*	NAII	\$350 (REF. 69)	NA∥
	150 (PE)	75-90 Gb		40b			\$45								
	250 (PE)*	125-150Gb*		60.h*			\$40 [‡]		Up to 200 Kb ¹⁵⁹	Up to 1.5 Gb ¹⁵⁹	>100,000	Up to	~12%, indel ¹⁵⁹	\$1,000*	\$750*
Illumina	36 (SE)	47–52 Gb	15B(SE)	2 d	0.1%	\$690 [‡]	\$180				(REF. 159)	48 h ¹⁶⁰			
HiSeq2500 v3	50 (PE)	135–150Gb	3 B (PE)*	5.5 d	substitution [‡]	¢000	\$78		NA	Up to 4Tb*	NAI	NA	NA ^{II}	\$75*	NA∥
	100 (PE)*	270-300 Gb		11 d*			\$45 [‡]	Synthetic long rea	ıds						
Illumina	36 (SE)	64–72 Gb	2 B (SE)	29 h	0.1%,	\$690 [‡]	\$150	Illumina	~100Kb See HiSea 2ª	See HiSea 2500	See HiSea 2500 See HiSea 2500	See	See HiSea 2500	No additional	~\$1,000*
HiSeq2500 v4	50 (PE)	180–200 Gb	4 B (PE)*	2.5 d	substitution [‡]		\$58	Synthetic	synthetic length*			HiSeq	(possible	instrument	
	100 (PE)	360–400 Gb		5 d			\$45	Long-Kead 15 10 [‡]				2500	barcoding and partitioning errors)	required	
	125 (PE)*	450-500 Gb*		6d*			\$30 [‡]								
Illumina	50 (SE)	105–125 Gb	2.5 B (SE)*	1–3.5 d*	0.1%.	\$740/\$900	\$50	10X Genomics	Up to 100 Kb	See HiSeq 2500	See HiSeq 2500	See HiSeq 2500	See HiSeq	\$75 (REES 72 161)	See HiSeq 2500
HiSeq3000/4000	75 (PE)	325-375 Gb			substitution [‡]	(REF. 156)	\$31	331 Synthe 222 (REF. 157)	synthetic tength				barcoding and partitioning errors)	(NEI 372,101)	sample ¹⁶¹
	150 (PE)*	650–750Gb*					\$22 (REF. 157)								

Platform	Read length (bp)	Throughput	Reads	Runtime	Error profile	Instrument cost (US\$)	Cost per Gb (US\$, approx.)	Platform	Read length (bp)	Throughput	Reads	Runtime	Error profile	Instrument cost (US\$)	Cost per Gb (US\$, approx.)
Sequencing by lig	ation							Sequencing by sy	nthesis: SNA (cont.)					
SOLiD 5500	50 (SE)	80 Gb	~700 M*	6 d*	\leq 0.1%, AT bias [‡]	NA§	\$130 [‡]	Illumina HiSeq X	150 (PE)*	800–900 Gb per flow	2.6-3 B (PE)*	<3 d*	0.1%,	\$1,000 ^{‡,¶}	\$7.0 [‡]
witdlife	75 (SE)	120 Gb								cell*			substitution [‡]		A A
	50 (SE)*	160 Gb*						Qiagen GeneReader	NA	12 genes; 1,250 mutations ²²	NA	Several days ²²	Similar to other SBS systems ²²	NA	\$400–\$600 per panel ²²
SOLiD 5500 xl	50 (SE)	160 Gb	~1.4B*	10 d*	≤0.1%, AT bias‡	\$251,000 [‡]	\$70 [‡]	Sequencing by syr	thesis: SNA						
	75 (SE)	240 Gb						454 GS Junior	Up to 600; 400	35 Mb*	~0.1 M*	10 h*	1%, indel‡	NA§	\$40,000 [‡]
	50 (SE)*	320GD*	NA	245*	-0.10/ ATh:	¢250	NIAI		average (SE, PE)*						
FCS ¹⁵⁵	50–100 (SE/PE)*	8-40GD^	INA"	Z4 n^	≤0.1%, AI bias*	\$250 (REF. 155)	NA"	454 GS Junior+	Up to 1,000; 700 average (SE, PE)*	70 Mb*	~0.1 M*	18 h*	1%, indel [‡]	\$108,000 [‡]	\$19,500 [‡]
BGISEQ-500 FCL ¹⁵⁵	50–100 (SE/PE)*	40–200Gb*										10 h*	1%, indel‡	NA§	\$15,500 [‡]
Sequencing by syn	nthesis: CRT											23.h*	1% indel [‡]	\$450.000 [‡]	\$9 500 [‡]
Illumina MiniSeq Mid output	150 (SE)*	2.1–2.4 Gb*												¢ 150,000	405,000
Illumina MiniSeq	75 (SE)	1.6–1.8 Gb										23 h	1%, indel*	\$49⁺	\$25-3,500*
High output	output 75 (PE) 3.3–3.7 Gb											3./h*	40/ + 1 1+	¢ .ot	¢700 4 000t
	150 (PE)*	6.6–7.5 Gb*				\cap	2000	Gh n	or ri	un		3 h	1%, indel+	\$49+	\$700-1,000+
Illumina MiSeq v2	36 (SE)	540–610 Mb										4.9 h^	404 * 1 1+	¢ 40†	¢ 450,000t
	25 (PE)	750–850 Mb									+ n		1%, indel+	\$49+	\$450-800+
	150 (PE)	4.5–5.1 Gb			(\sim		7 6 /				/.3 h*	40/ + 1 +	¢ > > ++	¢ o o t
	250 (PE)*	7.5–8.5 Gb*						/ モ/(JI)			2–4h*	1%, indel ⁺	\$224+	\$80+
Illumina MiSeq v3	75 (PE)	3.3–3.8 Gb										2.5 h	1%, indel+	\$65 (REF. 158)	\$2,400*
	300 (PE)*	13.2–15 Gb*	FRROR PROFILE <0.1%									∔h*		.	\$1,200*
Illumina NextSeq	75 (PE)	16–20 Gb									2.5 h	1%, indel ⁺	\$65 (REF. 158)	\$950*	
output	150 (PE)*	32–40 Gb*								łh*			\$475*		
Illumina NextSeq	75 (SE)	25–30 Gb										2.5 h*	1%, indel‡	\$65 (REF. 158)	\$300*
500/550 High output	75 (PE)	50–60 Gb													
	150 (PE)*	100–120 Gb*										₽h*	13% single pass, <1% circular	\$695 [‡]	\$1,000 [‡]
Illumina	36 (SE)	9–11Gb							consensus read,						
Rapid run	50 (PE)	25–30 Gb											Indel*		NIAI
	100 (PE)	50–60 Gb						J.5-6n^	NA"	\$350 (REF. 69)	INA"				
	150 (PE)	75–90 Gb	_		-										
	250 (PE)*	125–150 Gb*		60 h*			\$40 [‡]	Oxford Nanopore	Up to 200 Kb ¹⁵⁹	Up to 1.5 Gb ¹⁵⁹	>100,000	Up to 48 h ¹⁶⁰	~12%, indel ¹⁵⁹	\$1,000*	\$750*
Illumina	36 (SE)	47–52 Gb	1.5 B (SE)	2 d	0.1%,	0.1%, \$690 [±] substitution [±]	\$180	Oxford Napopore	NA	Lip to 4 Th*	NA	NA	NA	\$75*	NA
111300230073	50 (PE)	135–150 Gb	3 B (PE)*	5.5 d	substitution		\$78	PromethION	NA [*]	00000		IN/T	NA.	Ψ 1	
	100 (PE)*	270–300 Gb		11 d*			\$45 [‡]	Synthetic long rea	ds						
Illumina	36 (SE)	64–72 Gb	2 B (SE)	29 h	0.1%, \$690 [‡] substitution [‡]	\$690 [‡]	\$150	Illumina	~100Kb	See HiSeq 2500	See HiSeq 2500	See	See HiSeq 2500	No additional	~\$1,000*
HI3642300 v4	50 (PE)	180–200 Gb	4 B (PE)*	2.5 d			\$58	Synthetic Long-Read	synthetic length*			HiSeq 2500	(possible barcoding and	instrument required	
	100 (PE)	360-400 Gb		5 d			\$45						partitioning		
	125 (PE)*	450-500 Gb*		6 d*			\$30 [‡]	102 C		C 11'C 2500		C.	errors)	¢ ⁊ r	C 11/C 2500
Illumina	50 (SE)	105–125 Gb	2.5 B (SE)*	1–3.5 d*	0.1%,	\$740/\$900	\$50	10X Genomics	op to 100Kb synthetic length*	See HiSeq 2500	See HiSeq 2500	See HiSeq	See HISeq 2500 (possible	\$75 (REFS 72,161)	see Hiseq 2500 +\$500 per
HiSeq3000/4000	75 (PE)	325–375 Gb			substitution [‡]	(REF. 156)	\$31					2500	barcoding and		sample ¹⁶¹
150	150 (PE)*	650-750 Gb*					\$22 (REF. 157)						errors)		

nature biotechnology

OPEN

Genomic Encyclopedia of Bacteria and Archaea (GEBA)

1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life

Supratim Mukherjee^{1,10}, Rekha Seshadri^{1,10}, Neha J Varghese¹, Emiley A Eloe-Fadrosh¹, Jan P Meier-Kolthoff², Markus Göker², R Cameron Coates^{1,9}, Michalis Hadjithomas¹, Georgios A Pavlopoulos¹, David Paez-Espino¹, Yasuo Yoshikuni¹, Axel Visel¹, William B Whitman³, George M Garrity^{4,5}, Jonathan A Eisen⁶, Philip Hugenholtz⁷, Amrita Pati^{1,9}, Natalia N Ivanova¹, Tanja Woyke¹, Hans-Peter Klenk⁸ & Nikos C Kyrpides¹

Number of strains

Genomes By Metadata

Genomes By Antimicrobial Resistance

How Do We Process and Clean Up Our Data?

https://www.patricbrc.org

Pathway Conservation in Pathogenic Bacteria

The graph below shows conservation of metabolic pathways across percentage of total genomes in each pathogenic genus.

https://www.patricbrc.org

What's needed nowadays for a whole genome sequence?

- An interesting bacterial strain
- A smart PhD student for DNA extraction
- Outsourcing the sequencing
- A PhD Student with some experience in bioinformatic

How to genomic data can be used to assess the safety of a microbial product?

How a WGS looks like?

>g30571_seq5

ttcqtqttctcttaqacataaaaattcctcctqqtatqttttcttctaqtctacacaccttaatttttctqtctaqttaattqtaqcctatccaataqattacaaataqtatcqtatttcqcaatcttaaa attatettettaetgtgaataagataataaaatttgtatttgteetttttaggtaaettattttaatetatateettettetggateaaegaaagtataetttatatagteataaegeegatggtaaetatgcactgtaacgataatgctgctaaaatatctttttacgaaaaacatcacaaggaaaaacttaactatggtattatctaaacataatttttttcggtatttaatatttaattaggaggtaatattttgcttactcacaaactattttttatggaggaattgttttaattagtttactttcttcaacactttattctttgaatattatagatgtttccacctcaaattcaatatctattattggaatcattattgctgcaattattacacaactgtttttagtgtttggagagaagaagaagaagtaaaaaatagaaaactagtgatagttttggtgatataagaaaaacatatatgtataaaaagaagaagaagtagcttctctttgtacatatatggtttgttttttatggatgccgagcttttttataagataaggctaccgcccataacgacccaaggatttgtggaactaagtaaatacctgcaagaagcaagatcagctgggtcggttttaaaggatgaatatcaatgtgatgaacccgcttacggaatgataacgaaaatcaagcagtaaggcgaaatgcacataaggaacaaaagataaaagcaacggaaggtttttccagcaagtttttatcatctttcatcaccaaccttttacatgggtaaatgctgttgtacaaggtgcggagatattaggcctgatccaaggaagcggattagtggtttctaggaattttccagctttgactgttttctatttagtgataagtgtaggtctcttattaccaaaatctctgatcaatcactacaattggcagctgctttacttttcttgcttattagtatttacatctatgttttctttgctgcctcgcttgattatcggccctaatggtttgagcgagagtgatctqtatctataaaaaataactattqatqqtqqatcatcaqtaaaaaqcatatqaqctqcqtaaaatqcatqtttctcatatqctttttttattattattatqaaqaatqcqaaaaacqtttacatqatttttacataacttaactatatttttacagcaaccatacgagggatttacagtcgactgataaactttagttgtaaataagaaaggagcaataaaatgaaaaagtattgtttactctaggtatgatgggaattettttagccggatgcggctcaggatcaggaaatacagatggctctgccacacaaaataattcaagtgactcaaatgaacaagtaaaaatcgttgcggtaggttcgacagcattacagccgttagtcgatgcagcacaagaaagctttgtacaagaaaatccaaattatcaaatctctgtacaaggaggaggaagcggaactggtttgagccaagtcgaagctggagcagttactatcggaaactctgatgtatttgccctgtcaaagaattgggctatttaccattcacaatgatggaagtagaacgtgatcacgaaggaaatatcaaataactagcagataaacatgccacggtagtcgttactattaaggaaaaatcaactatgtttccccacatatacatttttcctttaattqtqaaaaataqttcctcatattttqccqttttttqaqctaataccqaqqqqtcaqctqattqaacaccqtttattcqaaaaaaaqaqctacqacataqaact

Assessment of Regulated MO

	Feed additive viable micro	es containing porganisms	Fermenta	tion products
	Bacteria	Fungi - yeasts	Bacteria	Fungi - yeasts
Identification	\checkmark	\checkmark	\checkmark	\checkmark
Antimicrobial susceptibility	\checkmark		\checkmark	
Antimicrobial production	\checkmark	\checkmark	\checkmark	\checkmark
Toxigenicity and pathogenicity	\checkmark	\checkmark	\checkmark	\checkmark
Genetic modification			For GMMs only	For GMMs only
Absence of the production strain			\checkmark	\checkmark
Presence of DNA from the production strain			where relevant	where relevant

()||(`A

WGS sequence in the RA of microorganims

	Feed add n	itives contain nicroorganism	ing viable 1s	Fermentation products				
	Bacteria	Yeasts	Fungi	Bacteria	Yeasts	Fungi		
Identification	\checkmark	\checkmark	\checkmark	~	~	\checkmark		
Antimicrobial susceptibility	√			~				
Antimicrobial production	\checkmark	√	\checkmark	√	√	\checkmark		
Toxigenicity and pathogenicity	~	~	~	~	~	\checkmark		
Genetic modification				For GMMs only	For GMMs only	For GMMs only		
Absence of the production strain				\checkmark	\checkmark	\checkmark		
Presence of DNA from the production strain				where relevant	where relevant	where relevant		

Use of whole genome sequence for characterisation of microorganisms

- Whole genome sequence analysis (chromosome(s) and/or extrachromosomal genetic elements e.g. plasmids) for bacterial and yeast strains intended for use either as products or production strains.
- WGS analysis is also recommended for filamentous fungi.
- WGS data provide information
 - unequivocal taxonomic identification of the strain,
 - virulence factors,
 - production of or resistance to antimicrobials of clinical relevance,
 - production of known toxic metabolites

Quality Criteria

- the sequencing strategy and instrumentation used
- the assembly method applied (e.g., the bioinformatic approach, de novo or reseq strategy)
- the statistical measure of sequence quality (e.g., number of reads, coverage, N50 and K-mer)
- the number of contigs and scaffolds required to represent the genome, their absolute length and their length relative to the genome size
- the annotation protocol used
- for fungi: information on the quality of the annotations obtained from relevant databases (e.g., BUSCO)

Identification

- Bacteria: Data from whole genome sequence (WGS)
 - 16S rRNA gene, housekeeping genes
 - computational approach for taxonomic assignments (e.g., phylogenomics or average nucleotide identity [ANI]).
- Yeasts: Data from whole genome sequence (WGS)
 - phylogenomic analysis (e.g. using a concatenation of several conserved genes to produce a phylogeny against available related genomes).

Filamentous fungi:

When WGS is available, a phylogenomic analysis comparing the genome against available related genomes.

UNIVERSITÀ CATTOLICA del Sacro Cuore ANI: Average Nuceoltide Identity

Average nucleotide identity (ANI), calculated from pair-wise comparisons of all sequences shared between any two strains, is ciìonsidered as the new metrics for bacterial species definition and classification.

菌株名/Strain Name	菌株ID/Strain ID in NCBI	ANI value comparing with query strain
S.suis_D9	NC_017620	99.05%
S.suis_YB51	NC_022516	98.70%
S.suis_ST3	NC_015433	98.67%
S.suis_BM407	NC_012926	96.24%
S.suis_S735	NC_018526	96.21%
S.suis_SS12	NC_017619	96.20%
S.suis_P1	NC_012925	96.18%
S.suis_GZ1	NC_017617	96.13%
S.suis_A7	NC_017622	96.11%
S.suis_SC070731	NC_020526	96.06%
S.suis_SC84	NC_012924	96.05%
S.suis_JS14	NC_017618	96.04%
S.suis_ST1	NC_017950	96.00%
S.suis_98HAH33	NC_009443	95.94%
S.suis_05ZYH33	NC_009442	95.88%
S.suis_T15	NC_022665	95.87%
S.suis_D12	NC_017621	95.53%
S.suis_TL13	NC_021213	95.49%

3.进化关系树/Phylogenetic tree based on ANI matrix

Antimicrobial Susceptibility

- Strains of bacteria carrying an acquired resistance to antimicrobial(s) should not be used, unless it can be demonstrated that it is a result of chromosomal mutation(s).
- Antimicrobial Resistance as a food risk

Absence of acquired antimicrobial resistances in bacteria: combined used of phenotypic and genomic data

- Presence of genes coding for or contributing to resistance to antimicrobials relevant to their use in humans and animals (CIAs or HIAs).
- Data focusing on complete genes coding for resistance to antimicrobials.
- Data should include at least the gene identification, function of the encoded protein, percentage of identity and e-value.
 https://card.mcmaster.ca/
 https://en.mediterranee-infection.com/article.php?laref=283%26titre=arg-annot

https://cge.cbs.dtu.dk/services/ResFinder/

Antimicrobial Resistance Gene Search

Genome and phylogeny

E1604

- WGS analysis should be used to identify genes coding for known virulence factors. For this purpose, comparison against specific up-todate databases (e.g. VFDB, PAI DB, MvirDB) should be performed.
 - Virulence factors
 - Toxins and secondary metabolites

http://www.mgc.ac.cn/VFs/main.htm http://www.paidb.re.kr/about_paidb.php http://mvirdb.llnl.gov

Pathways reconstruction

Uc7153Cyc: Pseudomonas fluorescens SBW25 (UCSC Piacenza) Cellular Overview

FUNG

WGS and MICs

- MIC > cut-off value for one or more antimicrobials requires further investigation using genomic data :
 - If no known AMR gene is identified that can be linked to the phenotype: OK
 - If the phenotypic resistance related to the presence of a known AMR gene: HAZARD
- If the genetic analysis reveals AMR genes for antimicrobials considered to be CIAs or HIAs (WHO, 2016), the MIC values should be determined and compared with values in the literature:
 - If MIC≤ (reference values), the likelihood of the AMR gene to become active should be assessed (e.g. based on sequence comparison with active genes)
 - If MIC> (reference values), this is considered as a hazard.

GMM: assessment of genetic modification by WGS analysis

- Detailed information, including a map or graphic presentation of all genomic regions (chromosome, contig or plasmid) harbouring genetic modifications, indicating:
- the open reading frames (ORF) actually inserted, modified or deleted. the non-coding sequence(s) inserted/deleted/modified. The role and function of these sequences (e.g. promoters, terminators) should be indicated
- Comparison the WGS of the GMM with that of the non-modified parental or recipient strain.

Conclusions