

Adverse outcome pathways to bridge the gap between epidemiology and experimental neurotoxicology

Marcel Leist In Vitro Toxicology and Biomedicine Doerenkamp-Zbinden Chair , University of Konstanz, Germany

Acknowledgement

EFSA working group (esp. Andrea Terron, Susanne Hougaard, Anna Price)

Konstanz group (esp. Simon Gutbier Alice Krebs Johannes Delp)

PESTICIDE EXPOSURE AND HEALTH EFFECTS

Ntzani EE, Chondrogiorgi M, Ntritsos G, Evangelou E, Tzoulaki I

EFSA supporting publication 2013:EN-497

EXTERNAL SCIENTIFIC REPORT

Literature review on epidemiological studies linking exposure to pesticides and health effects¹

Evangelia E Ntzani, Chondrogiorgi M, Ntritsos G, Evangelou E, Tzoulaki I

Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Grecce

OPINION of ANSES on the INSERM collective expert appraisal report "Pesticides. Health effects"

An association (statistical correlation) between exposure to pesticides and the risk of developing Parkinson's disease (PD) was found

Are the current toxicity testing methods sufficient to detect adverse outcomes of relevance to human neurological disease, such as PD?

Epidemiological findings linking pesticides to PD

Exposure	Presumed link	
Pesticides	Professional & non professional	++
Herbicides	Professional & non professional	++
Insecticides	Professional & non professional	++
++: Meta-analyse VAN DER MARK M clues to heterogeneity in study resu	› Parkinson's disease? Some	
Chemical classes	Population with a siginificant excess risk	Presumed link
Insecticides Dieldrine	Professional & non professional General population (non smoking)	++ ±
Paraquat	Farmers	+
Paraquat Rotenone		+ +

Inserm 2013, ANSES opinion 2014

++ Results from several cohort studies

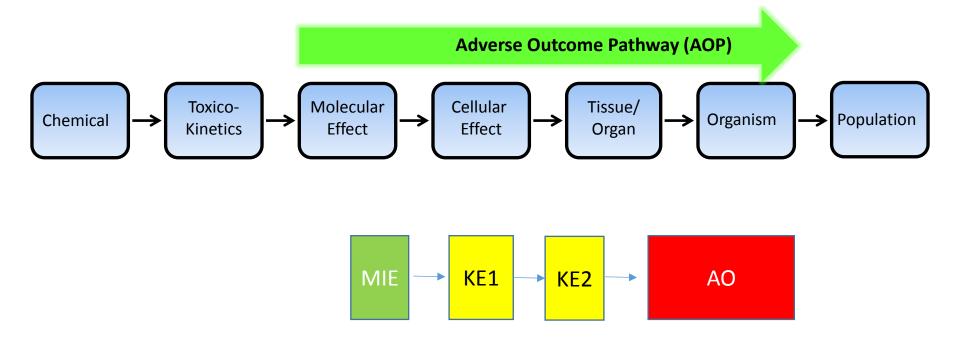
+ Results from one cohort study or 2 case-control studies

± Results from one case-control study

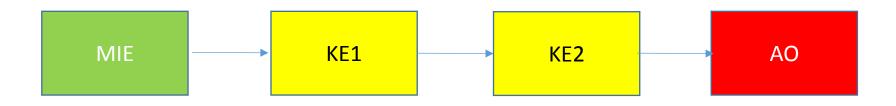
\rightarrow How do we deal with epidemiology (correlation studies) in pesticide risk assessment?

\rightarrow AOP!

paraquat

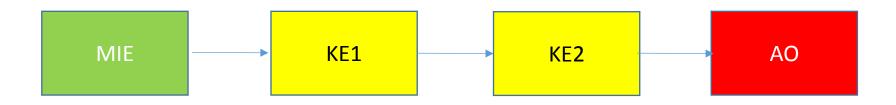

REGULATORY TOXICOLOGY

Adverse outcome pathways: opportunities, limitations and open questions

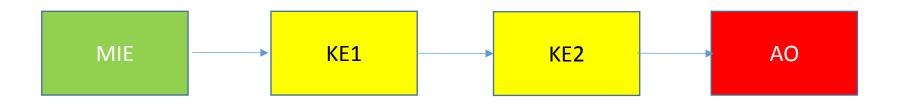

Marcel Leist¹ · Ahmed Ghallab^{2,3} · Rabea Graepel⁴ · Rosemarie Marchan² · Reham Hassan^{2,3} · Susanne Hougaard Bennekou⁵ · Alice Limonciel⁶ · Mathieu Vinken⁷ · Stefan Schildknecht¹ · Tanja Waldmann¹ · Erik Danen⁴ · Ben van Ravenzwaay⁸ · Hennicke Kamp⁸ · Iain Gardner⁹ · Patricio Godoy² · Frederic Y. Bois¹⁰ · Albert Braeuning¹¹ · Raymond Reif² · Franz Oesch¹² · Dirk Drasdo^{13,14} · Stefan Höhme¹⁵ · Michael Schwarz¹⁶ · Thomas Hartung¹⁷ · Thomas Braunbeck¹⁸ · Joost Beltman⁴ · Harry Vrieling¹⁹ · Ferran Sanz²⁰ · Anna Forsby^{21,38} · Domenico Gadaleta²² · Ciarán Fisher⁹ · Jens Kelm²³ · David Fluri²³ · Gerhard Ecker²⁴ · Barbara Zdrazil²⁴ · Andrea Terron²⁵ · Paul Jennings²⁶ · Bart van der Burg²⁷ · Steven Dooley²⁸ · Annemarie H. Meijer²⁹ · Egon Willighagen^{30,31} · Marvin Martens³⁰ · Chris Evelo^{30,31} · Enrico Mombelli¹⁰ · Olivier Taboureau^{32,33} · Alberto Mantovani³⁴ · Barry Hardy³⁵ · Bjorn Koch²⁹ · Sylvia Escher³⁶ · Christoph van Thriel² · Cristina Cadenas² · D. Kroese³⁷ · Bob van de Water⁴ · Jan G. Hengstler²

Received: 3 July 2017 / Accepted: 21 August 2017 / Published online: 19 October 2017 © Springer-Verlag GmbH Germany 2017

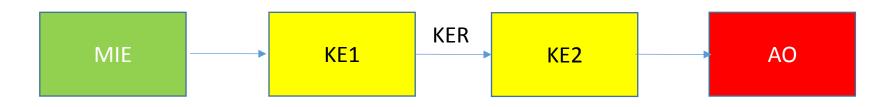
Structuring of a chain of events by AOP


- MIE: Molecular initiating event
- KE: Key event
- AO: Adverse outcome

MIE: 1. compound agnostic (biology-focussed),2. preceded by ADME events (local dose relevant for MIE)

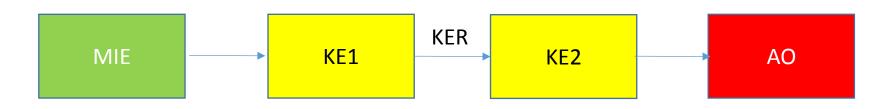

An AOP cannot account for ADME/exposure, because this are specific properties of substances

An AOP is characterizing hazard, not risk!!


MIE: compound agnostic (biology-focussed), preceded by ADME events (local dose relevant for MIE)

KE: must be an **essential** process (necessary, but not sufficient)
 has an activation threshold, is **measurable**, is generally observable,
 may be shared between AOP

MIE: compound agnostic (biology-focussed), preceded by ADME events (local dose relevant for MIE(

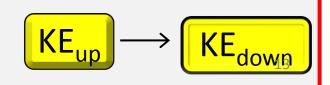

- KE: must be an **essential** process (necessary, but not sufficient) has an activation threshold (**measurable**, generally observable) may be shared between AOP
- AO: is not a complex disease (like PD), but a distinct apical endpoint

MIE: compound agnostic (biology-focussed), preceded by ADME events (local dose relevant for MIE(

- KE: must be an **essential** process (necessary, but not sufficient) has an activation threshold (**measurable**, generally observable) may be shared between AOP
- AO: is not a complex disease (like PD), but a distinct apical endpoint

KER: The KE relationship links two blocks. It is AOP specific

KER: The KE relationship links two blocks. It is AOP specific


- 1. How does this KER work?
- 2. Weight of evidence
 - 2a. Plausibility (biological background knowledge, knock-outs, ...)

2b. Correlations/Concordance (in time, dose, etc.)

- 3. Quantitative understanding of the linkage
- 4. Uncertainties and inconsistencies
- 5. Taxonomic applicability

Concordance criterium:

stressors that perturb KE_{up} also perturb KE_{down} in expected fashion, with respect to dose, time and incidence

Features and mis-conceptions of the AOP concept:

- 1. AOP do not include ADME, and they are compound agnostic
- 2. It is a multi-scale data integration tool (sorting and prioritization)
- 3. It can provide plausibility for statistical associations of hazard
- 4. It may be used in <u>risk assessment as element of an IATA</u>
- 5. It can indicate testing deficits and guide testing

APPROVED: 15 April 2015

PUBLISHED: 20 April 2015

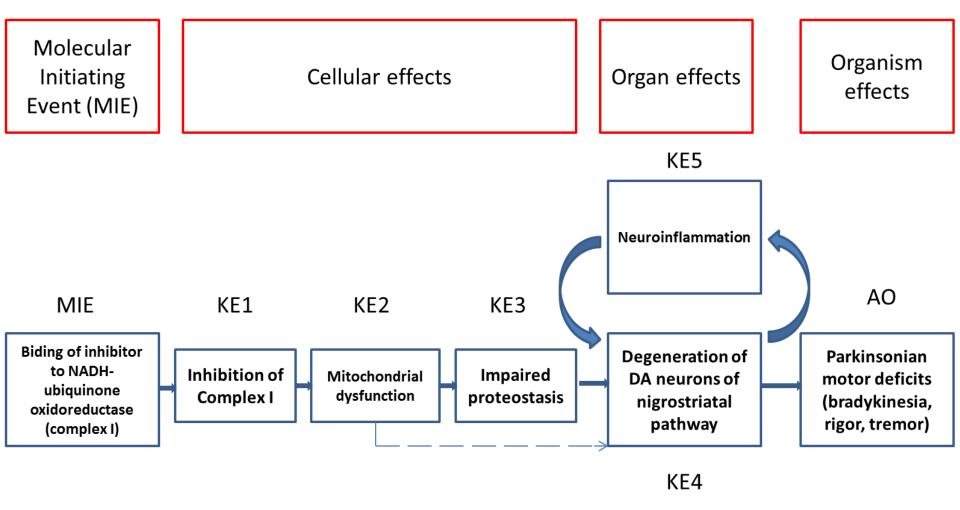
Stakeholder Workshop on the use of Epidemiological data in Pesticide risk assessment

European Food Safety Authority

Exploration of a new strategy (adverse outcome pathway (AOP)-based:

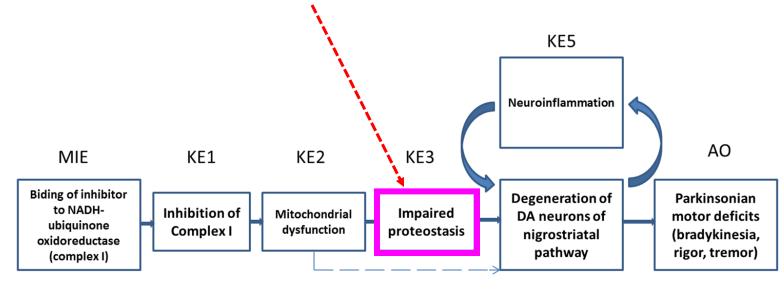
- 1. Can AOP make a link of pesticide exposure and human disease plausible?
- 2. Can AOP inform on whether current testing would identify all relevant hazard?
- 3. Can AOP be used to guide improved testing approaches?

By now, 6 AOP are accepted by ECHA to justify in vitro data submission. Number growing...


Example of AOP documentation

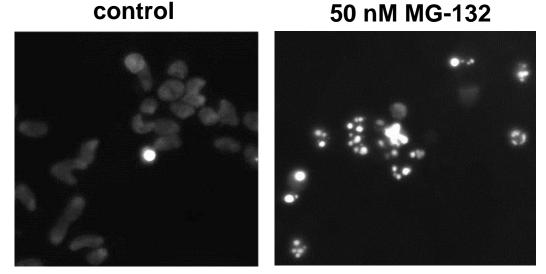
 Biological plausibility/Concordance DA neurons of the substantia nigra project into the striatum and release DA [1-3] In the striatum, DA is involved in the modulation of motor cortex output as part of the extrapyramidal system [4-6] PD is characterized by a decline in striatal DA levels and the onset of parkinsonian motor deficits [7,8] Parkinsonian motor deficits are observed at a reduction of striatal DA of > 80 % [9,10] 	Uncertainties Only limited mechanistic information is available decribing the relationship between the decline in striatal DA and the individual unique PD motor deficits (rigidity, tremor, bradykinesia) Degeneration in other brain areas might contribute to the PD phenotype [50-54] DAT, VMAT-2, or TH as markers of DA cell loss are problematic due to regulation of expression [55-57] Behavioral tests in rodents assess parameters of motor impairment that are not representative for human PD [58]		
KE 4 KER 8 AO	Weight of Evidence weak moderate strong		
DA neuro- degeneration Parkinsonian motor deficits	Biological X		
	Empirical X		

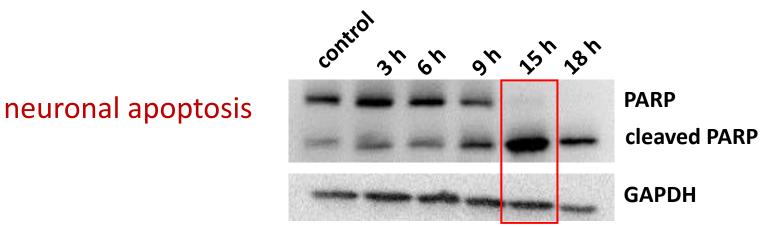
Empirical support for the association of KE 4 with KEs_{downstream}


- Analysis of DA levels in post mortem brains and in live PD brains indicates a reduction, directly correlated with the severity of motor deficits [11-18]
- Replacement of endogenous DA (e.g. by L-DOPA) reverses motor deficits [19-30]
- Case studies of tissue grafts or replacement of degenerating DA neurons in the substantia nigra by stem cells indicate a reinnervation of the striatum and an improvement of motor performance [31-36]
- Complex Linhibitor-dependent selective loss of nigrostriatal DA neurons, decline in striatal DA, and the onset of PD motor deficits, as well as its reversal by L-DOPA is constantly observed among humans, non-human primates, and in rodents [37-49]

Structuring of a chain of events by AOP

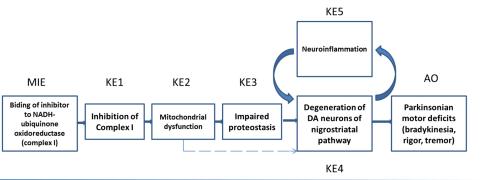
This AOP:	Ockleford C et al. (2017) EFSA J <u>15</u> , 4691, (325 pages)
	https://aopwiki.org/wiki/index.php/Aop:3
Complex variant:	Schildknecht et al. (2017) TIPS (July issue)

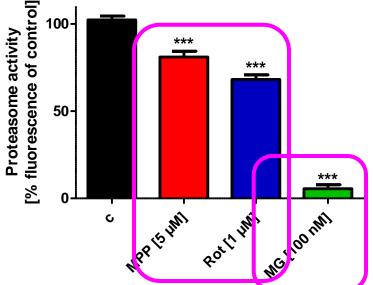

3rd key event of AOP: impaired proteostasis

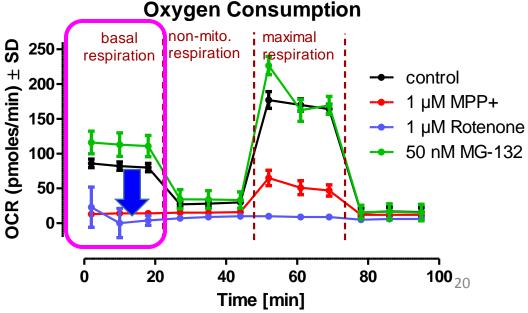

KE4

Each of the KE should alone be sufficient to trigger the adverse outcome (e.g. inhibition of proteasome)

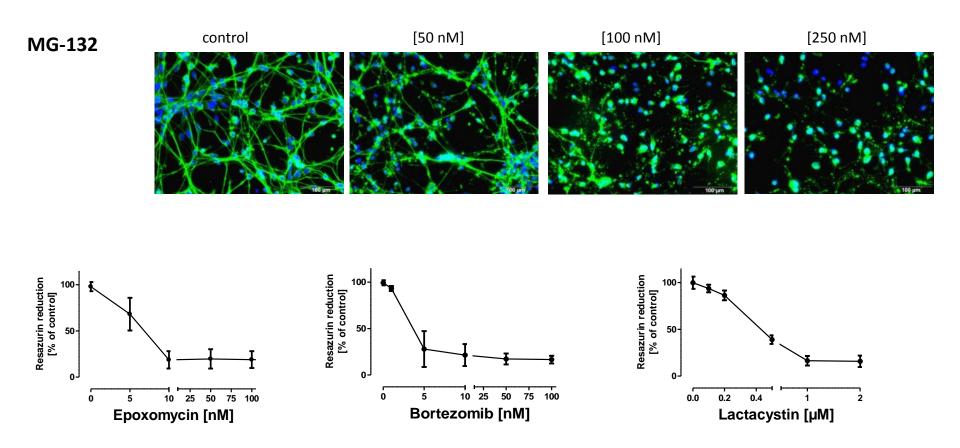
The proteasome inhibitor MG132 triggers neuronal death



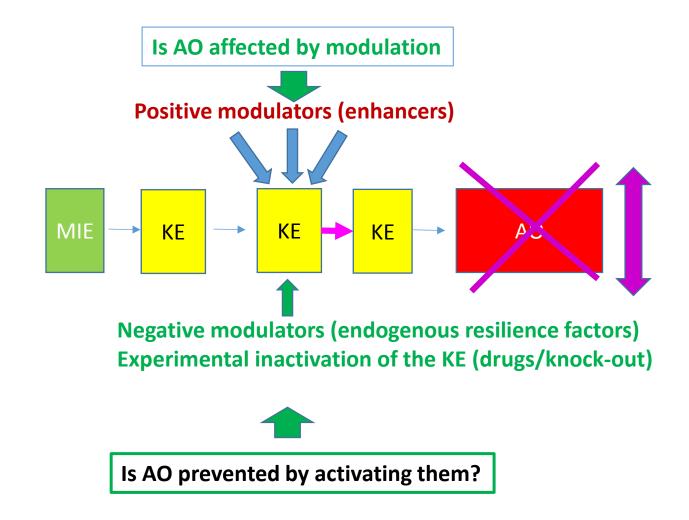

Measurement in vitro (LUHMES human dopamine neurons)


Positioning of proteasome inhibition within the AOP

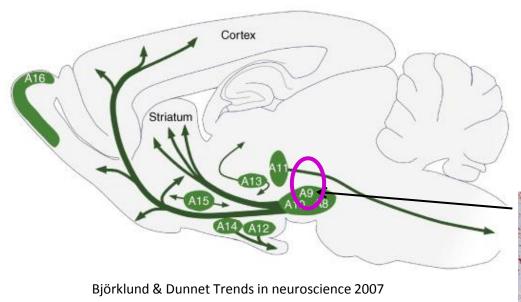
Rotenone and MPP+ (complex I inhibitors) trigger proteasome dysfunction (KE3)



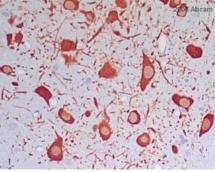
Rotenone and MPP+ block respiration (KE1/2), but the proteasome inhibitor MG132 (downstream) does not affect respiration



Triggering of degeneration of human neurons by proteasome inhibitors



Neurodegeneration triggered by low concentrations of proteasome inhibitors


How to prove essentiality of a KE?

Histopathology of parkinsonian neurodegeneration

Loss of dopaminergic neurons of the S. nigra (A9)

IDENTIFICATION OF DA NEURON LOSS IN TOXICOLOGY STUDIES?

- Substantia nigra is in the rostral part of the midbrain is not investigated in standard studies, but is in neurotoxicity 424 and 426 studies
- Lewy bodies are detected by immunostaining is not carried out in routine studies
- Only indicator of 'PD' in routine studies is motor activity in short term repeat studies
- Only in case of suspected neurotoxicity specialised tests are carried out

Summary of quantitative effects at the concentrations of rotenone and MPTP that trigger the AO (Parkinsonian motor symptoms)

\bigcap					
Concentration	KE1 Inhibition of C I	KE2 Mitochondrial dysfunction	KE3 Impaired proteostasis	KE4 Degeneration of DA neurons of nigrostriatal pathway	AO Parkinsonian motor symptoms
Rotenone 20-30 nM rat brain concentration [1, 2, 5, 6]	Approx. 53% [4-5]	Approx. 20-53% (decrease in respiration rate) [1-2]	Approx. 20-60% (decrease in UPS (26S) activity) [3]	Neuronal loss (50% of animal affected) [2]	Motor impairment (100% of animals with neuronal loss) [2]
MPP+ 12-47 μM rat brain concentration [3,4]	Approx. 50-75% [5]	Approx. 38% (reduction in phosphorylating respiration) [5]	Approx. 60% (decrease in UPS activity) [4]	Approx. 50% of neuronal loss [4-5]	Motor impairment [4]

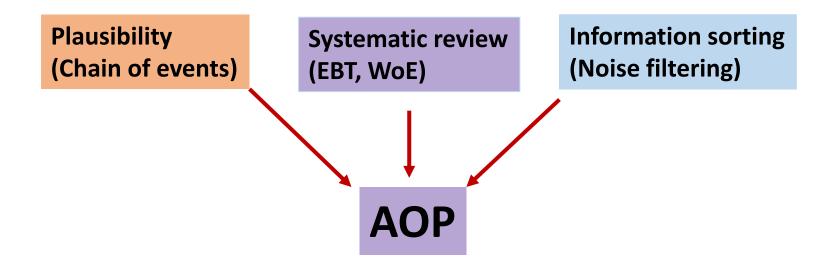
References: Okun et al. 1999 [1]; Barrientos and Moraes 1999 [2]; Borland et al.2008 [3]; Thomas et al 2012 [4]; Betarbet et al 2000 [5] and 2006 [6]

Summary of quantitative effects at the concentrations of rotenone and MPTP that trigger the AO (Parkinsonian motor symptoms)

At concentrations < 20 nM rotenone \rightarrow neuron loss may be e.g. 40%

At a neuronal loss of 40% \rightarrow no motor deficits at all are observed

up to 50% loss: no motor deficit


not detectable by standard locomotor testing!

dramatic pathology (40% loss) would remain undetected by standard toxicological screening

An AOP-based test battery would provide broader opportunities to detect such toxicity

EFSA conclusions: positive rationale for use of AOP

to structure the information relevant for a potential link of pesticides to PD

to evaluate the suitability of current testing

to guide studies testing for a potential link of pesticides to PD